标王 热搜: 按摩  铆接机  分离机  固液分离机  黑平台  轧道机  期货  不让祛斑产品  百家乐   
 

如何申请微信支付功能开发个人开发者微信支付第三方微信支付接口

放大字体  缩小字体 发布日期:2020-01-14  浏览次数:19
  经过简单的计算,你就能理解这个道理。圆的半径是0.5厘米,但等边三角形中心到顶点的距离是√3/3 ≈ 0.58厘米——大于圆的半径,这个圆当然就无法覆盖到三角形的顶角了。

  当然了,最保险的方法就是准备一大块布,这样什么洞都能补上了,就是有些浪费。那么问题来了:能不能找到面积最小的一块布,让它能够补上任意形状的,宽不超过1厘米的洞呢?

  ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

各项目对接,需要第三方支付通道平台接口的

请发duan信内容“支付” 到 ⒈⒏⒈⒉⒐⒌⒍⒋⒎O⒋  这个hao码给我

我会给你线上联xi方式,不要打dian话!因为特殊性,谢谢和作。

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

  在数学中,这被称为“万有覆盖问题”(universal covering problem)。这个问题是亨利·勒贝格(Henri Lebesgue)在1914年写给另一位数学家朱利叶斯·帕尔(Julius Pál)的一封信中提出的。这个问题的说法有很多种,但它们的核心都是宽度为1,也就是在平面上有一个图形,图形中任意两点间的距离都不超过1。勒贝格的万有覆盖问题,就是要求找到一个面积最小的图形,使其能够“覆盖”所有宽度为1的图形。

  这个看似简单的问题其实已经困扰了数学家们一百多年,甚至到了现在,他们依然没有找到最终答案。如果只要求能够覆盖所有宽度为1的洞,那么我们有很多的选择,但要找出面积最小的那个就很困难了。

  为了讨论这个问题,让我们先假想出任意一个宽度为1的形状R,虽然不知道它长什么样子,但其中一定存在相距1单位长度的两个点,我们称之为A点和B点。

 

特别提示:本信息由相关企业自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。


[ 行情搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]

0条 [查看全部]  相关评论

 
相关行情
推荐行情
点击排行
 
网站首页 | 关于我们 | 联系方式 | 使用协议 | 版权隐私 | 网站地图 | 排名推广 | 广告服务 | 积分换礼 | 网站留言 | RSS订阅